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ABSTRACT 
 Robotic workspace optimization is a central element of robot 
system design. To formulate the optimization problem, the complex 
relationships between design variables, tuning parameters, and 
performance indices need to be accurately and efficiently 
represented.  The nature of the relationships suggests that 
metamodels, or models of the models, should be used to derive 
suitable objective functions. A comparis on of two metamodeling 
techniques for robotic workspace optimization problems for several 
trial cases suggests that non-uniform rational B-spline models, 
derived from computer graphics and computer-aided design 
techniques, are as suitable as response surface models to solve 
planar 3R workspace optimization problems. Promising nonlinear 
modeling results with B-spline models suggest future work is 
justified and performance gains can be realized. 
 
INTRODUCTION 

During the process of design, engineers are ultimately 
confronted with the challenge of determining how to modify 
design variables in order to achieve or exceed desired 
performance criteria. For simple systems, or for experienced 
engineers, an Edisonian, or experiential approach to design is 
often used in lieu of a formal design methodology. However, 
this approach may fail if the engineer lacks sufficient 
experience to be able to make appropriate decisions, or if the 
complexity of the system exceeds the experience of the 
engineer. This limitation is common for many design problems 
of current interest where high performance and limited design 
experience exists. In such problems, the number of 
performance criteria, typically highly non-linear functions 
(perhaps unknown in closed form) of a large number of design 
variables, that must be considered simultaneously far exceeds 
the number that a human engineer can comfortably 
contemplate. 
 While the complexity of many current design problems 
surpasses the experience and capacity of many engineers, the 

development of complimentary computational capabilities that 
can be applied to the benefit of the designer seems to be ever 
more feasible. Very sophisticated, commercially available 
software systems are used to predict the performance of 
proposed designs. Computers are able to process far more data, 
at a far greater speed than any engineer can, but adequate tools 
to combine the predictions of multiple performance simulations 
for informed decisions making are unavailable or problematic. 
This data, often from disparate sources, must be combined into 
a single coordinated representation for effective analysis and 
visualization. This is accomplished through a family of 
techniques known as metamodeling. Metamodeling uses 
experiments and models as the basis for a higher-level model of 
models, known as a metamodel. 
 The most popular metamodeling technique, Response 
Surface Models (RSM) uses quadratic approximations [14] and 
is difficult to implement for more than 10 variables. [13,26] 
Real problems are often inadequately modeled with quadratic 
representations and have many more than 10 variables (dozens 
or hundreds are common). For complex, nonlinear problems, 
these limitations can lead to ineffective metamodels. 
 Metamodels based on spline theory, B-Spline Models 
(BSM) may be able to overcome these limitations.  The focus 
of this work is a preliminary study of the performance of BSMs 
compared to RSMs. For this study, a robotic workspace design 
problem was selected.  This design problem can be formulated 
with a limited number of design variables, making it 
computational tractable for a preliminary study, and yet this 
system can exhibit highly nonlinear behaviors. 
 Robotic system design is inherently concerned with the 
definition of robot workspaces. All robotic workspaces are 
subsets of the Reachable Workspace of a robot, or the set of 
points that the robot can reach with its tooling. An 
appropriately designed robot will ensure that the task manifold 
is contained within the reachable workspace [18]. General-
purpose robot designs maximize the reachable workspace with 
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respect to geometric constraints that describe the robot’s 
operating region while maintaining a dexterous workspace [29]. 
This is the basis for workspace optimization.  
 While most robots are spatial mechanisms, planar 3R 
mechanisms, such as that shown in Figure 1, (comprised of 
three rotary joints operating in a plane) are an important group 
of mechanisms that can be used to represent the limbs of many 
biological and mechanical mechanisms [8]. Despite their 
significance, previous research has addressed few of the 
kinematic serial planar manipulator workspace optimization 
issues [3]. 
 

 
Figure 1. 3R Serial Planar Configuration and reachable 
workspace (in red) used to compare RSM and BSM 
performance. 

 

 Like many complex design problems, analytical tools 
supporting workspace optimization are limited [20]. Due to the 
introduction of trigonometric functions to describe the position 
of the rotary joints, the resulting systems models exhibit 
nonlinear behaviors. Therefore, the use of a metamodel, or a 
simplified model of the original model can be used to identify 
optimal solutions for complex problems [30]. Metamodels are 
commonly used in nonlinear, complex, and multidisciplinary 
optimization problems. A simplified computationally beneficial 
metamodel is derived for the optimization problem objective 
function.  
 Two metamodeling approaches are compared in this paper. 
Response Surface Models (RSMs) are based on polynomials 
derived from Design of Experiments Methodologies. A second 
approach uses Non-Uniform Rational B-Splines (NURBs), a 
general piecewise polynomial representation derived from 
spline theory and employed in computer graphics, to produce a 
B-Spline Model (BSM). 
 The remainder of this paper reviews metamodeling 
literature and develops a set of metamodel criteria to compare 

the suitability of these two techniques as solutions to planar 3R 
workspace optimization problems. Using successively more 
complex formulations and metamodel selection criteria, 
metamodel performance estimates support the conclusion that 
BSMs are promising and at least as suitable as RSMs to solve 
planar 3R workspace optimization problems. Supporting 
software, and further work is needed. 

1. METAMODELING 
 Metamodels are generally employed in three cases. The 
first case is when accurate analytical models are not available 
and a metamodel must be derived from experimental data.  The 
second case is when analytical models are available, but require 
more computational effort to use than is feasible.  The third 
case combines multiple analytical and/or experimental models 
into a single metamodel often for multidisciplinary 
optimization (MDO) efforts. The relationship between the 
actual system, direct models and metamodels is shown in 
Figure 2. 

 
Figure 2. System, Model and Metamodel Relationships. 

 

 The most common form of a metamodel uses Design of 
Experiments techniques to formulate an RSM, which is an 
implicit polynomial representation of the relationship between 
design variables and performance indices [27]. This approach 
can be contrasted with the BSM parametric polynomial form. 

1.1. RESPONSE SURFACE MODELS 
 RSMs use an implicit polynomial formulation, denoted as 
P(x,y) in R2 space, where x and y are design variables, and P is 
a performance index.  The polynomials used in RSMs typically 
are either linear or quadratic polynomials [26,27,30]. Equation 
1 shows the form of a single variable RSM, while Equation 2 
shows the form of a dual variable RSM [27].  
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 Where β represents the coefficients of each term, and n 
defines the order of the polynomials used to define the RSM 
[27]. RSMs can be used to model curves in R2 space as well as 
surfaces in Rn>2 space. These formulations may be extended to 
cases with additional variables, although ten variables are 
generally considered the practical limit [13,26]. RSMs are 
usually derived as linear models, which are replaced with 
quadratic models at the end of the application for model 
confirmation [14]. This RSM formulation is generalized in 
Equation 3. 

( ) { } ( ){ }T
VPV DNDP β=  (3) 

 Where {Np(Dv)} is a vector of the terms resulting from a 
power series expansion of the design variables, Dv, that serves 
as the basis for the RSM. The RSM is “fit” to the data using 
single or multivariate least-squares regression techniques [4]. 
As a result, RSMs can provide predictive capabilities [14]. The 
RSM properties are determined by its implicit form and by the 
techniques used to “fit” the model to the available data, so 
implicit form properties are discussed next. 

1.2. IMPLICIT REPRESENTATIONS 
 Implicit geometric representations are well known, and are 
often the first surface representation introduced to students.  
The point set satisfying Equation 4 defines an implicit curve, 
while the point set satisfying Equation 5 defines an implicit 
surface [5].  

0),( =yxf  (4) 
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  Implicit forms have certain advantages. They are unique 
formulations with respect to a multiplicative constant [22]. 
Implicit representations readily represent unbounded curves 
and surfaces, and provide easy determination of the 
membership of a point in the point set defining an object [22]. 
Implicit surfaces can be readily extended to Rn spaces by 
increasing the dimensionality of the independent variables. 
From the perspective of an analyst, the coefficients of an RSM 
provide considerable information about the relative significance 
of Dv’s within the RSM. 
 However, implicit forms also have disadvantages. They are 
dependent upon the choice of coordinate system, which may 
lead to numerical instabilities in their evaluation and difficulties 
in their use, affecting their ability to match segmented RSMs at 
their boundaries [24].  Furthermore, implicit objects are more 
difficult to evaluate at equal intervals over the representation, 
an important step for meshing and data visualization [24]. 
Implicit formulations include planar and spatial curves, as well 
as hyperdimensional surfaces. 

 The polynomial representations produced from implicit 
RSMs have been successfully used as the basis for defining the 
objective function for multiple optimization algorithms [14], 
including gradient [19], simulated annealing [31], and genetic 
algorithm type methods [32]. Derivatives of polynomials are 
easily calculated for gradient methods.  
 Difficulties with implicit representations have led to a 
significant body of work surrounding parametric 
representations for computer graphics and computer-aided 
design. 

1.3. PARAMETRIC REPRESENTATIONS 
  Parametric representations use explicit relationships 
between the coordinate system and one or more independent 
parameters.  A parametric curve is described with a single 
independent parameter, while a parametric surface utilizes two 
independent parameters.  Higher order parametric objects can 
be constructed with additional parameters. The resulting object 
is described by a vector valued function such as P(u,v) shown 
in Equation 6 for a surface in R3 space [24]. 

),()),(),,(),,(( vuPvuzvuyvuxf =  

for bvua ≤≤ ,  
(6) 

 Compared with implicit representations, parametric 
formulations have advantages. Low order parametric 
formulations are readily extensible to higher order spaces, and 
higher order object representations can be derived. The 
parameterization of these objects makes the form of the object 
coordinate system independent [22]. Parameter bounds make 
these representations ideal for the modeling and segment 
blending [22]. The role of the parameter makes these forms 
more useful for interpolation than for prediction [14]. 
Parametric forms are amenable to generating uniform meshes, 
enabling easy computer representations [22].  
 Unlike implicit forms, parametric forms do not have 
unique solutions [22]. Parametric objects generally require the 
storage of more information than an implicit representation’s 
polynomial coefficients, and the coefficients of a parametric 
representation do not necessarily convey the same information 
about the relative importance of individual terms, as is the case 
with implicit formulations. Parametric formulations also can 
generate incorrect features, such as loops and folds in the 
representation [22]. 
 It is often possible to convert implicit representations into 
parametric forms, and vice versa [16]. Before rendering, 
implicit representations are often converted to a generalized 
type of parametric representation, known as a Non Uniform 
Rational B-Splines or NURBs.  NURBs are the de facto 
standard for geometric descriptions in computer graphics and 
computer-aided design applications [22].  
 A polynomial can be represented as a NURB, and so, given 
a NURB, an appropriate polynomial expression can be derived. 
NURB derivatives are also explicitly defined [22,23,24]. 
Therefore, as equivalent polynomial representations, NURBs 
also can be used as the basis for many optimization algorithms. 
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1.4. B-SPLINE MODELS 
 The BSMs developed for this work are based on NURBs, 
which are defined for a curve by Equation 7 [24]. 
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 Where {B} is a vector defining the location of the defining 
nC control points in Rn+1 space, w defines the weight of a 
particular control point, and Ni,k(u) is the B-spline basis 
function in terms of the parameter u, as defined by Equations 8 
and 9 [24]. 
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 Where {x} is the knot vector, a sequence of values 
defining the region of control point influence within the NURB.  
Equations 8 and 9 are subject to the conditions given by 
Equation 10 [24]. 
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 Higher order objects, such as surfaces, are produced with a 
tensor product, resulting in a grid of control points, and the 
multiplication of Equation 7 by additional basis functions 
associated with the additional parameters. Control points, 
associated weights, and one or more parameters and knot 
vectors define a NURB. Each of these parameters lends 
additional flexibility to NURBs, producing a universal curve 
definition [10].  
 The BSMs used for this comparison have all weights set to 
1, a typical approach [22,24], and utilize spline-fitting 
techniques developed by Legault [17] and Turner [28] that 
iteratively reduce the maximum error in a spline model. This 
approach to fitting BSMs to data is distinctly different from 
traditional BSM metamodel approaches that match control 
points to data points in a one-to-one relationship [27]. 
 The increased complexity of BSMs is a disadvantage, 
requiring the storage of control points locations and knot 
vectors, and because the additional flexibility of NURBs results 

in an under constrained system of equations that can result in 
poor results [21]. A literature review found few references on 
BSM representations, apparently due to the difficulties in BSM 
implementation [1,2,27]. Most work was conducted in the early 
to mid 1990s and no references specific to BSMs using NURBs 
were found.  
 Potential BSM advantages are recognized. Practical studies 
have indicated that in complex, nonlinear, multidisciplinary 
design environment, additional metamodel flexibility is 
beneficial [25]. In particular, NURBs have been found to be 
numerically robust, capable of accurately representing many 
geometric forms, and have a broad set of supporting algorithms 
[21]. Like a polynomial, the BSM order determines its 
computational complexity. BSMs also benefit from the use of 
specialized graphics acceleration hardware for rapid NURBs 
computation [10]. BSMs also allow for local data changes 
without requiring global model recalculations [22]. 

1.5. METAMODELING CRITERIA 
 Three features distinguish RSMs and BSMs. BSMs use 
low order polynomials valid over small regions of a global data 
set, while the RSM polynomials are global. BSMs use B-spline 
basis functions, while RSMs use power basis functions. Finally, 
BSMs define their shape with control points while RSMs use 
their polynomial coefficients. 
 In order to compare the suitability of these two 
metamodeling techniques, a set of criteria are needed. 
Optimization algorithms did not provide suitable criteria, as 
both techniques can be used by a variety of optimization 
algorithms. The central issue between RSMs and BSMs in 
optimization is the model accuracy and computational 
complexity. In essence, how good is the model? 
 Hussein, et al, [12] recently proposed a set of eight criteria 
to select appropriate metamodels. Two of these criteria are 
concerned with data acquisition issues, which is beyond the 
scope of this work. The remaining six criteria: 1) 
Computational Complexity, 2) Model Accuracy, 3) Model 
Visualization, 4) Model Flexibility, 5) Stability with respect to 
New Data, and 6) Commercial Software Availability were 
adopted to compare RSMs and BSMs [12]. 
 The first two criteria are concerned with the model’s 
computational complexity and accuracy.  A model that does not 
produce accurate results, or that requires excessive resources to 
calculate is a poor metamodel [12,25]. The third criterion is 
concerned with the subsequent ability to visualize the model 
and thus, provide insight to the analyst. 
 Criterion 4, model flexibility is important for optimization. 
The chief challenge when using metamodels for optimization is 
achieving a suitably accurate and smooth representation of an 
arbitrary data set [12].  
 The fifth criterion is considered when the metamodel is 
provided with new data and must incorporate this new 
information [12]. The sixth criterion is commercial software 
availability. While this criterion is biased towards popular, 
traditional and existing techniques, it is a reasonable basis to 
judge metamodels in a non-research setting [12]. 
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2. ROBOTIC WORKSPACE OPTIMIZATION 
 Little work has been conducted on 3R serial planar 
mechanism kinematic optimization [3], and most focuses on 
dynamic properties. A few kinematic criteria have been 
considered including reachable workspace volume (RWVC), 
Jacobian condition number (JCNC), and joint range availability 
(JRAC) [6,8,29]. 
 Of these criteria, both RWVC and JRAC have closed form 
expressions. JRAC and the JCNC are local criteria, and thus are 
functions of the manipulator joint angles, while RWVC is a 
global property of the manipulator. Since RWVC is a 
fundamental robot design element, it is used extensively in 
section 4. JCNC was also selected due to more interesting 
criterion properties. Both criteria are functions of the link 
lengths.  
 JCNC is a particularly valuable and challenging criterion, 
derived from the Jacobian matrix of a manipulator [11]. JCNC 
measures the proximity of a manipulator to singularities [15]. 
As a robot approaches a singularity, its controllability is 
reduced [15], the manipulator’s ability to exert or react forces is 
altered [33], and the dexterity of the robot is limited [11]. 
Further, JCNC is related to JRAC [15].  Several JCNC 
forms have been proposed and used [15]. A condition number 
based on the infinity norm of the Jacobian matrix is used in 
section 4. 
 Metamodel results used to represent RWVC and JCNC for 
the robotic system described in section 3 are shown in section 
4. Closed form expressions for JCNC gradients are not 
available, complicating optimization with JCNC and requiring 
metamodels [15]. 

2.1. PROBLEM DESCRIPTION 
 The 3R serial planar robot configuration used for this work 
was previously shown in Figure 1. The position of the end 
effector, as a function of the joint angles can be derived from 
the system geometry. This model can be differentiated with 
respect to the joint angles to define the Jacobian matrix, a 
standard element in the formulation of most robotic system 
models. The system model is subject to the assumptions 
described by Equations 11 and 12. 

2
πθ ≤i   for i=1,2,3  (11) 

and 1.03 =l  (12) 

 Equation 11 reduces the effect of singularities on the 
system. Two singular cases remain, when θ2=0, and a boundary 
singularity condition due to the reachable workspace boundary. 
Both cases are denoted by the inability of the manipulator to 
simultaneously specify x, y, and φ  [7]. Equation 12 also was 
applied to set minimum link lengths for links 1 and 2. 
 The metamodel goal is to reveal and define relationships 
between design variables, Dv, tuning parameters, Tp, and 
performance indices, Pi. These variables comprise the system 
design space shown in Figure 3. Metamodels are used to define 
functional relationships in the form of Equation 13. 

{ } { }( )PVi TDfP ,=  (13) 

 Based on the system shown in Figure 1, and the 
assumptions made in section 3.1, the system design variables, 
tuning parameters, and performance indices are defined in 
Table 1. Additional terms such as those for dynamic 
characteristics also exist, but were not considered. The 
variables used to compare metamodels are shown in Table 1 in 
red. 

Table 1. 3R Serial Planar Manipulator Design Space Axes. 
Dv: L1, l 2, l3, β, xbase, ybase, τ1, τ2, τ3, … 
Tp: θ1, θ2, θ3, ω1, ω2, ω3, α1, α2, α3, … 
Pi: RWVC, JCNC, JRAC, Payload, … 

 

 These variables define five trial cases, two of which are 
Pi’s that are functions of a single active variable (2D cases), and 
three of which are Pi’s that are functions of two active variables 
(3D cases). The remaining terms were artificially held constant. 
Sections 3.2 and 3.3 describe these cases. 

 
Figure 3. The Design Space. 

2.2. 2D FORMULATIONS 
 Two cases were examined where a performance index was 
written as a function of a single design variable, resulting in a 
2D metamodel. The first case defines the lengths of link 1 and 2 
as a function of a single parameter, β, according to Equations 
14 and 15. The objective is to maximize the reachable 
workspace for a unit manipulator length. This can be 
considered to be a normalized, nondimensional length design 
problem. 

β7.01.01 +=l  (14) 

)1(7.01.02 β−+=l  (15) 

 The performance index of interest is the RWVC, a global 
criterion that is a function of the link lengths, or in this case, a 
function of solely β. 
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 The second case considers the JCNC for a fixed set of link 
lengths (0.5,0.4,0.1). To simplify this problem to 2D, the link 
lengths were fixed, and the tool orientation was set at φ=30o by 
fixing θ2=30o, and θ1=-θ3. As a result JCNC is a function of 
only θ1. 
 As a local criterion, the objective of JCNC is to minimize 
the JCNC value throughout the reachable workspace. To be 
compatible with RWVC, the Pi is defined as the negative sum 
of the 2-norm over the reachable workspace space volume, 
shown in Equation 16. 

( )∫−=
Vi dVJCNCP 1θ  (16) 

2.3. 3D FORMULATIONS 
 Three cases were examined where the Pi is a function of 
two active variables. The first case is an extension of the initial 
2D case where the requirement for a manipulator of unit length 
has been removed. This is a dimensioned manipulator design 
problem. Thus, the RWVC is now a function of the link lengths 
1 and 2. 
 A more complicated case occurs if the size of a 
manipulator is constrained by a geometric boundary. While the 
initial 2D case addresses the design problem associated with a 
no collision condition, allowing for collisions with the 
boundary may enhance the overall manipulator workspace 
volume. This case calculates the ratio of the reachable 
workspace to the potential workspace volume within a 2-unit 
square centered on the robot base. 
 The third 3D case considered is for the JCNC where the 
link lengths remained fixed at (0.5,0.4,0.1) and θ2=30o. Without 
a condition on, φ, JCNC becomes a function of θ1 and θ3. 

2.4. IMPLEMENTATION 
 Data for these trials was obtained via simulations created 
within the program MathCadTM for a 900MHz PC computer. 
All subsequent calculations to derive and evaluate RSMs and 
BSMs were performed within this same environment. 
Algorithms defining RSMs available within MathCadTM were 
used for RSM generation, while algorithms defined by Legault 
[17] and Turner [28] where simulated within this environment. 
No dedicated supporting software algorithms were created due 
to time constraints imposed upon this research. The preliminary 
use of these algorithms via MathCadTM allowed for preliminary 
results to be obtained without the development of optimized 
supporting programs. This limited the size of the problems that 
could be solved to levels that are far less than those solved with 
dedicated software by both Legault [17] and Turner [28]. 

3. MODEL COMPARISONS 
 Using the five cases presented in sections 3.2 and 3.3, and 
the criteria from section 2.5, RSM and BSM metamodels for 
each case were derived and their accuracy was compared. Since 
RSMs are typically limited to quadratic models [14], quadratic 
RSMs are used as the basis for comparison with quadratic 
BSMs. Thus the metamodels generally have equivalent 
computational complexities.  

3.1. 2D RSM VERSUS SPLINE MODELS 
 The first 2D case fits RSM and BSM metamodels to data 
representing the RWVC versus the link ratio, β. The data is 
well fit by both the RSM and BSM metamodels, with 
comparable errors, and correlations exceeding 99% as 
calculated from Pearson’s correlation coefficient [4]. Figure 4 
shows the model results. The 2-segment BSM accuracy in this 
trial is equivalent to the quadratic RSM used. 

 
Figure 4. Case 1: Metamodel Accuracy. 

 The case 2 data is considerably more complex and 
nonlinear. A quadratic RSM results in a poor fit, with large 
errors and a correlation of <50%. A 5-segment quadratic BSM 
produces a model with smaller errors and a correlation of more 
than 90%. Results are shown in Figure 5. 

 
Figure 5. Case 2: Metamodel Accuracy. 
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3.2. 3D RSM VERSUS SPLINE MODELS 
 The third case is a 3D metamodel, where RWVC is a 
function of link length 1 and 2. Both the RSM and BSM models 
fit the resulting data with very little error and more than a 99% 
correlation. Notably, while the BSM is quadratic along one 
axis, it is linear along the second axis. The metamodel 
performance is comparable, but the BSM actually has slightly 
less computational complexity. Results are shown in Figure 6. 

 
Figure 6. Case 3: Metamodel Accuracy. 

 The fourth case considered was the RWVC under the 
presence of a geometric boundary. The workspace volume no 
longer grows with increasing link lengths, but begins to shrink 
as the robot workspace extends past the boundary. For this 
application, the RWVC was formulated as a ratio of the robot 
workspace volume within the geometric boundary with respect 
to the 2-unit square volume that defines the boundary. The 
metamodel results are shown in Figure 7.  
 Without developing supporting software, iterations were 
limited to the generation of a 25 control point mesh, 
representing a 3x3 mesh of quadratic patches. At this point, the 
correlations and maximum errors produced by the two 
metamodels were equivalent. However, while the narrow 
“ridgeline” that is apparent in the data is better represented by 
the BSM, the “3-peak” representation is misleading, and thus 
the RSM has apparently better visualization properties.  
Subsequent iterations would probably improve the BSM 
representation. 
 The final case considered was for the JCNC, as a function 
of θ1 and θ3, for fixed link lengths of (0.5, 0.4, 0.1) and θ2=30o. 
Like case 2, this is a highly nonlinear function.  Figure 8 shows 
the results. 
 The BSM used for case 5 was also limited to 25 control 
point mesh, representing a 3x3 mesh of quadratic patches. Both 
correlations remain low, 56% for the BSM and 41% for the 
RSM, and significant errors remain. However, the BSM 
resembles the data more closely than the RSM. Based on the 

results from case 2, a mesh of 49 control points could achieve 
an estimated 90% fit. Additional work is needed to facilitate the 
calculation of larger control point meshes. 

 
Figure 7. Case 4: Metamodel Accuracy. 

  

 
Figure 8. Case 5: Metamodel accuracy. 

3.3. MODEL PERFORMANCE 
 Based on the relative performance of the BSM with respect 
to the RSM in each of the five cases defined in sections 4.1 and 
4.2, and the six criteria identified in section 2.5, the Decision 
Matrix shown in Table 2 was developed.  Each trial was rated 
as successively more difficult and each of the 6 criteria was 
weighted according to their importance.  The BSM was rated in 
comparison to the RSM baseline.  
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Table 2. Decision Matrix comparing RSMs with BSMs for 6 criteria and 5 trial cases. 

 
 

 Because of the complexity of the Decision Matrix, a 
simplified Pugh chart shown in Table 3 was developed from the 
Decision Matrix. Five relative performance levels performance 
were identified, significant improvement (++), imp rovement 
(+), equivalent (X), degradation (-), and significant degradation 
(--), and the BSM was rated using the RSM as a baseline. 

Table 3. Pugh Chart comparing RSMs with BSMs for 6 
criteria and 5 trial cases. 

Case 
Criteria 

1 2 3 4 5 
Total 

1 X X + X X +1 
2 X ++ X X + +3 
3 X + X - + +1 
4 + + + + + +5 
5 + + + + + +5 

6 - - - - - - - - - - -10 
Total 0 +3 +1 -1 +2 +5 

 

 Criterion 1, computational complexity, suggests the 
techniques are essentially equivalent, based upon Gopi and 
Manohar’s demonstration that a B-spline’s computational 
complexity is determined by its order just as is the case for a 
polynomial [10]. The case 3 results give a slight edge to BSMs, 
since their model is equivalent, but is not fully quadratic. 
 Criterion 2, model accuracy, strongly favors BSMs for case 
2, and based on the progress of the mesh in case 5, suggests that 
some benefit also exists for this trial. This criterion was 
calculated based on the how well the metamodel fit the data, as 
does not evaluate the data quality.  The accuracy of each trial is 
shown in Table 4. The development of appropriate software 
facilitating mesh generation would greatly enhance the ability 
to examine this concept for problems of realistic complexities. 
 Criterion 3, model visualization favors BSM in large part 
because they more accurately represent the data for cases 2 and 
5, while favoring the case 4 RSM representation due to the 
misleading “3-peak” BSM representation.  The rating of this 

criterion is somewhat subjective, but is based on a visual 
comparison of the actual data to the resulting model in an 
attempt to penalize a model that may produce an exceptionally 
accurate fit by inducing more variations than probably actually 
exist. 

Table 4.  Metamodel Accuracy for each trial case. 
   (100% is a perfect fit) 

Case 
Model 

1 2 3 4 5 
RSM 99.5% 42.9% ~100% 96.2% 40.9% 
BSM 99.5% 95.9% ~100% 96.9% 59.5% 

 Criterion 4, model flexibility, favors the more flexible 
geometric BSM representation based on reviews in the 
literature [10,25]. Criterion 5 favors the local BSM behavior 
with respect to new data, also based on the literature survey 
[22]. In this situation, B-Spline basis functions are also more 
stable than the power basis functions used in RSMs [1]. 
Criterion 6 strongly favors the present commercial availability 
of RSM supporting software. In a commercial design setting, 
this criterion is particularly valid, although in a research setting, 
it can be argued that it should not be considered. 
 Overall, BSMs are slightly favored, (more definitively so if 
criterion 6 is resolved with the development of supporting 
software), particularly for the nonlinear cases 2 and 5. For the 
remaining cases, BSMs appear to perform approximately as 
well as RSMs.  This is not surprising since BSMs are a 
generalization of RSMs. The BSM advantage lies with highly 
nonlinear applications.   

4. CONCLUSIONS AND FUTURE WORK 
  This comparison does not support a definitive conclusion 
that BSMs are more suitable than RSMs to solve robot 
workspace optimization problems. Both techniques are suitable 
for simple test problems, although BSMs appear to have an 
edge in representing more complex nonlinearities. One can 
conclude that BSMs are as suitable as RSMs, and possibly 
more suitable for nonlinear cases. As this is a preliminary 
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study, these results are sufficiently encouraging to suggest 
additional work is warranted. 
 Unfortunately, many algorithms succeed with simple cases 
only to fail when applied to complex “real” problems [9]. 
Therefore, additional work examining BSM performance for 
complex and nonlinear “real” optimization problems is needed. 
Software tools to support this research also address the primary 
BSM disadvantage, the current lack of available BSM software. 
Development of supporting software could verify this apparent 
performance advantage. Initial results, while promising, require 
additional research. 

 This research is a preliminary investigation to 
determine if a metamodeling method based on spline theory 
would be competitive with existing approaches such as RSMs. 
The results are sufficiently promising to justify further research 
into the potential of BSMs to represent the design space of 
complex systems.  The ultimate goal of this research is the 
development of a method, based on spline theory that can 
represent the complex relationships between design variables 
and performance indices that can be used to enhance the 
effectiveness of the engineering design process. 
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